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Concept

d
The University of Houston-Clear Lake established the Research Institute for

Computing and Information systems in 1986 to encourage NASA Johnson Space
Center and local industry to actively support research in the computing and :-7,_+ +
_nformation sciences. As _rt of thls end_v0r, UFI-__ro_ a _+
partnership with JSC to jointly define and manage an integrated program of research
in advanced data processing technology needed for JSC's main missions, including
administrative, engineering and science responslbilities. JSC agreed and entered into
a t_ee-year cooperative agreement with ua-Oear Lake beginning in May, i986, to
jointly plan and execute such research through RICIS. Additionally, under
Cooperative Agreement NCC 9- ! 6, computing and educational facilities are shared :
by the two institutions to conduct the research.

The mission of RI_ to conduct,=_rdinate and disseminate research On

computing and information systems among researchers, sponsors and users from
UH-Clear Lake, NASA/JSC, and other research organizations, Within UH-Clear
Lake, the mission is being implemented through interdisciplinary involvement of t
faculty and students from each of the four schools: Business, Education, Human _
Sciences and Humanities, and Natural and Applied Sciences.

Other research organizations are involved via the "gateway" concept. UH-Clear _-"
Lake establishes relationships with other universities and research organizations,
having common research interests, to provide additional sources of expertise to tall
conduct needed research.

A major role of RICIS is to find the best match of sponsors, researchers and
research objectives to advance knowledge in the computing and information _
sciences. Working jointly with NASA/JSC, RiCIS advises on research needs,
recommends principals for conducting the research, provides technical and
administrative support to coordinate the research, and integrates technical results
into the COOperativegoals of UI-I-Clear Lake and NASA/JSC. _ _
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The Xpress Transfer Protocol (XTP)

Robert M. Sanders

Computer Networks Laboratory

Department of Computer Science
University of Virginia

--- A Tutorial

=--

E_

=

ABSTRACT

XTP is a reliable, real-lime, light weight transfer _ layer protocol being developed by a group of

researchers and developers coordinated by Protocol Engines Incorporated (PED.It'2,3I Current
transport layer protocols such as DoD's Transmission ConlTol Protocol (TCP) [41

and ISO's Transport ` Protoco! (TP)[_I were.not d_esigned for the next generation of high speed,

interconnected reliable networks such as FDDI and the gigabit/second wide area networks.

Unlike all previous transport layer protocols, XTP is being designed to be implemented in

hardware as a VI.,SI chip set. By streamlining the protocol, combining the transport and network

layers and utilizing the increased speed and parallelization possible with a VLSI implementation,

XTP will be able to provide the end-to-end data transmission rates demanded in high speed
networks without compromising reliability and functionality.

This paper describes the operation of the XTP protocol and in particular, its error, flow and rate
control, inter-networking addressing mechanisms and multicast support features, as defined in the
XTP Protocol Definition Revision 3.4. [ti

, =i! ¸ _:
_ _7 =

1. The wanxfer layer is formed by combining the functionalities of both the network and transport layers of the ISO

OSl model into a single layer.
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1. Introduction

Future computer networks will be characterized by high reliability and very high data

transmission rates. Traditional transport layer protocols, such as TCP and TP4, which were

designed in an era of relatively sIow and unreliable interconnected networks, may be poorly

matched for the emerging environment. Although they contain many necessary features, such as

error detection, retransmission, flow control and data resequencing, they ate deficient in many

respects m they do not provide rate control and selective retransmission, reliable multicast is not

supported, their packet formats are complex and require extensive parsing due to variable header

lengths and support of complex modes. These protocols manage many timing events at both the

sender and the receiver -- for example, since the sender does not initiate receiver data

acknowledgements, both the receiver and sender require an additional timer. The data

transmission _s assumed are no longer valid and may limit the scalability of the protocols -- in

TCP, for example, which was designed in an era of 56Kbps datatransmissionrates,the flow

window sizeissmaU, and basedon ........16 bitbytesequencingl_=Finaily,thestatemac_nes for these

transportprotocolswere intendedforsequentialratherthanparallelexecution.For example, the

placementofthechecksum fieldwas consideredarbitraryand so itwas placedintheheader.

XTP providesforthereliabletransmissionof datain an inter-networkedenvironment,with

real-timeprocessingof the XTP protocol--i.e.,theprocessingtime forincoming or outgoing

packets is no greaterthan transmissWn time. XTP containserror,flow and rate control

mechanisms similartothosefound inothermore modem transportlayerprotocols2 inadditionto

multicastcapability.Timer management isminimized m in XTP thereisonly one timeratthe

I
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2. Specifically,two othermodem _rm'isponlayerprotocols _ VersatileMessage TransactionProtocol(VMTP)
developedatStanfordUniverskyby DavidCheriton,andNetworkBulkTransfer(NETBLT) developedatMrr by
DavidClark.
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receiver, used in closing the context. XTP has a 32 bit flow window. XTP's state machine is

specifically designed for parallel execution. Address translation, context creation, flow conu'ol,

error control, rate control and host system interfacing can all execute in parallel.

The XTP protocol is considered a lighnveight protocol for several reasons. First, it is a fairly

simple yet flexible algorithm. Second, packet headers are of fixed size and contain sufficient

information to screen and steer the packet through the network. The core of the protocol is

essentially contained in four fixed-sized fields in the header- ._y, ROUTE, SEQ and the

command word. Additional mode bits and flags are kelx to a minimum to simplify packet

processing.

The XTP subsystem can be decomposed into four processes as shown in Figure 1 and

described in Table I. 3 These processes am the reader, receiver, the writer and the sender. In

Figure l, one end of a full-duplex connection is depicted. A conneclion can be considered as a

pair of contexts, with one context at each end of the connection.

W

L--
w

w

3. Note that other implementationschemes are possible. This particular scheme was taken from the example imple-

mentation described in the XTP Protocol DefinitionRevision 3.4.
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 -ocesi
Reader

Writer

Receiver

Sender

Accw

control blocks

input buffer

control blocks

output buffer

network interface

translation map
input buffer
context records

network interface

translation map

output buffer
context records

Description

Interface _tween XIP receiver and host operating system.

Transfers data and commands from receiver to host through control blocks. [

Interface between XTP sender and host operating system.
Transfers data and commands to sender from host through control blocks.

Parses Packets received from the network.

Queues data for reader in the input buffer.

Uses translation map to determine context owning packet.
Updates Coritext record to maintain state of receiver.

Prepares packets for transmission.

Uses translation map to determine outbound network address.

Transmits packets onto the network.

F

!:
1
J

I

Updates context record to maintain state of sender and manages XTP timers. ,a
TABLEI. XTPFh'ocesses

In this hypothetical implementation, control blocks arc used to pass data and commands
I

between the host operating system/user application and the XTP subsystem. Each control block

corresponds to one XTP service request, such as read or write a block of data to or from the

W

remote process. Each controlblock is associated with a context, whose state is containedin a w

context record.

I
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v

HOST_

CONTROL

BLOCKS RECORDS

FigureI. XTP ProcessStructure

OUTPUT BUFFER

TRANSLATION MAP

L--

Consider the sequence of events occurring when an application initiates a data transmission.

The host operating system prepares a control block containing the write command and pointing to

the data to transmit. The control block is then passed to the XTP subsystem. In the subsystem, the

writer process examines the control block and responds by queueing the appropriate data into the

output buffer for the associated context. Ultimately, the sender process prepares the data into one

or more packets, which it transmits to the remote destination network address. At the destination,

the XTP subsystem receiver parses the incoming packet, and queues the data for delivery to the

destination's host operating system. Presently, the destination's reader process extracts the data

from the input buffer, and transfers it to the host. Once the data have been delivered, the reader

updates the associated control block to indicate that the data have been received.

w

The companies belonging to the Technical Advisory Board (TAB) developing XTP are:

AMD, Apollo, Artel/NASA, Boeing, Bmoktree, Concurrent, DY-4, IBM, Intergraph, haterphase,

Mentat, SBE, Silicon Graphics, Synemetics, Unisys and Xerox. Research affiliates include the



University of Virginia, Concordia University, Naval Surface Warfare Center (NSWC) and Naval

Ocean Systems Center (NOSC).
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2. XTP Protocol Overview

A protocol specifies how data are exchanged between two or more user entities using

sequences of protocol data units (PDUs). User entities for XTP arc referred to as client or

application processes, and may be located at or above the session layer of the OSI Reference

Model. Each PDU consists of a sequence of fields laid out in a specific format. Some fields

contain control information, some contain data. Some fields are optional. The length of a field

may be variable or constant. Different PDU types have different packet format specifications.

2.1 Type s of XTP PDUs

XTP utilizes two frame formats, one for control packets and one for information packets (see

Figure 2). XTP packets can also be typed. XTP znformation packet types are DATA, FIRST,

PATH, DIAG (Diagnostic), MAINT (Maintenance), ROUTE and MGMT (Management). DATA

and FIRST packets both can contain User data. Also, an experimental information packet for

coalescing data packets at a router is being studied and is called a SUPER packet. Control

packets have two types: Control (CNTL) and Route Control (RCNTL). Table 2 describes the

function of each of these packet types.

v

Z

w

INFORMATION PACKET

(24 By_s) (V.riable Lea_) (16 By_s)

CONTROL PACKET

(24 Bytes) (Variable Length) (16 Bytes)

Figure 2. General Frame Formats

Both packet type formats (control and information) share a common header segment and a

common trailer segment, each of constant length. The common header is 24 bytes long, while the

common trailer is 16 bytes in length. Each XTP packet includes a variable length segment

between the header and trailer whose segment type determines the packet type (i.e., in

information packets the variable length segment is known as the information segment; in control

packets the variable length segment is referred to as the control segment). The important fields
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are aligned on 8 byte boundaries so that they can be quickly accessed by any machine with 2

byte, 4 byte or 8 byte alignment. The formats are described in greater detail later.

t

PACKET

DATA "'

PATH

DIAG

MGMT

CNTL

SUPER

ROUTE

RCNTL

TYPE

INTO 0¢XX_0

h"h'FO 00110

L'NFO 01000

INFO

INTO

INFO

CNTL

CODE CESEaXTOa or_scnlrq'iOff"

0_010 sender Intttare, s context esteblishmc'nL e.om_ ad_c,rdr

segmmt md may comaia client data.

sender Conuuns client data.

01010

01110

o(o_)f....

I0010

sender

receiver,

sender

sender,

n_ceiver

router

sender,

router

Establisbes iauh to receiver. Umd in ia/_.aei ¢xxmeetions.

Indica_s error c_dition at rer.eiver or rouum

(Example: _stination unknot)

Gathen end-m-end diagnogic data.

('F.xJu_p_: ct_ hotL_ oa mute)

N_ defined in the XTP Pnxogd Defmilim vernon 3.4

Used by receiver to reruma _: contain. ' 'I_C_I Velt" $

teeor, flow md _a_ parametm.

U_.d by sender where nHyndue_izin I with the receiver.

Expenmmud packet fomu_ mint for oualea_n$ data

packeu at a router win8 the same rouw.

Used for r_,_ control. Sere by ceat_a orilma_"

to request that roun. be released. $¢m by Rou_r

to acknowledle that mum hu beat

10011 rouua" Router geaerauxi _ packet. May be generated by room,

at my time.

Pack-, type indicated by 5 bR code in common header'$ C_ _ field.

Least sign_t bit in type field code is set for _trol packets.

TABLE 2. X'I'P Packet Types

The common header specifies the packet type and identifies what portion of the data stream,

if any, is included in the information segmenL Optional modes, such as disabling error checking

or multicast transmission, are indicated in the packet header's comrol.[tags field. The common

trailercontainstwo checksumfields,iden fles howmuchof the data stream has been delivered

to the receiving client application, and also contains a flags field. These flags generafly control

state changes, for example closing the data transmission connection or requesting data

acknowledgement. Message boundaries axe also specified in the trailer by setting the end of

message flag (EObO.

=k=

The information segment contains the user data being transferred, and is also used to pass

addresses and other miscellaneous data when appropriate. In general, user data bytes are

W

W

lIB

W

m
W

J

W

m

m

m

m
W



r_

= =

E_

-9-

streamed to the receiver application process in the order generated by the sending application

process (a bit pipe). Each data packet contains a contiguous subset of the data stream being

transferred. In XTP, there is no protocol-imposed upper limit on the number of bytes included in

each data packet -- each implementation is bounded by the underlying datalink layer. For each

implementation this limit is known as the maximum transmission unit (MTU) and is found by

subu'acting the XTP header and trailer sizes from the datalink's maximum data field size. XTP

supports two additional modes of data transfer which allow out-of-band, tagged data of constant

length (8 bytes) to be included in the data packet along with the user's data. These additional data

bytes also appear in the information segment, either at the beginning or at the end of the usual

user data. Their presence is indicated by flags in the header and trailer (the tag). Beginning

tagged data are indicated by the BTAG flag in the common header. Ending tagged data are

specified with the ETAG flag in the common trailer.

The control segment contains the receiver's error, flow and rate control parameters' values.

This segment also contains fields used to resynchronize the transmitter and receiver when

necessary.

2.2 Multi-Packet Handshaking

Sequences of PDU exchanges between the user entities must correspond to a protocol-defined

handshake. The handshake requires multiple packet exchanges in both directions and perhaps

involving different types of packets. Two-way communication is necessary to establish end-to-

end data transmission reliability levels in XTP as in other protocols. I4] In XTP, multi-packet

exchange sequences provide user applications with both a transport-level virtual circuit capability

and a transport-level datagram service. For example, in XTP a connection may consist of an

exchangeof three packets, as shown in Figure 3.
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FIRST (A)

PAC_T FUNCTION

• Request context be established
FIRST (A) • Transmission of user data

• Request context termination

• Acknowledge context init request
CONTROL 03) , Acknowledge user data reception

• Acknowledge context termination
request

CONTROL (C) • Inform destinationthat sender
hasterminated context

CONTROL 03)

CONTROL (C)

Figure 3. Three PacketConnection-Mode Handshake

The scenario above depicts how XTP can reliably set up a connection between two user

processes,transmitdata,and closethe connectionwith a minimum of thn_ packets. In this

scenario, the source initially transmits packet (A). At the destination the header is examined and

itisdeterminedthatthesourcewishestoestablishasend connection.Ifthedestinationwishesto

comply, a contextisestablished.The packet'sdata arethenqueued for transferto the waiting

destination user process.

Within packet(A)'sheaderand trailerisencoded thecurrentstatusof theconnectionatthe

sourcefrom which itisdeduced thatpacket(A) isthelastdatapackettobe transferred,and that

the sourceisready to closethe connection.Also,the sourcerequeststhata controlpacketbe

returned with the currentstatusof thedestination.

After successfully transferring the received data to the host, the destination complies by

sending control packet (B). This packet acknowledges the receipt of the data, and indicates that

the destination is als0 ready to close the connection. On receiving packet (B), the sender emits

control packet (C), and closes its side of the connection -- thus completing the three way

handshake. Any buffers still associated with the connection are freed, and the sender wig no

longer respond to control packets arriving for the context. When packet (C) is received by the

J

I
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destination, the connection is closed.

Since the basic network may be unreliable, packets may be dropped in transit, become

corrupted, arrive out of order, or may be duplicated. Packet reception is not guaranteed. The

sendermust _sume that packet reception _d _fil directed otherwise by the receiver. Thus,

the receiver is required to positively acknowledge correctly received data from the network as in

TC'P. This acknowledgment is contained in the control packet sent from the destination back to

the sender. By a similar argument, the receiver can not be sure that the acknowledgement arrived

safely at the sender unless the sender acknowledges the receiver's acknowledgement. To avoid

the recursivetrapof acknowledging acknowledgements, and acknowledging acknowledgements

of acknowledgements, the protocolmust resortto a differentmechanism for guaranteeing

deliveryof theacknowledgement. Itismore efficientforthereceiverto assume thatthesender

receivedtheacknowledgement unlessinformedby thesenderotherwise.This shiftstheburdenof

lostacknowledgments onto the sender.In XTP, thesendercan requestacknowledgement of all

currently received data by setting the status request bit (SREQ) in the XTP common trailer, as

described in Table 3. A timer CNTIMER) is used by the sender to determine if the receiver has

failed to respond to a sender-generated request for current status and data acknowledgement. If

the timer expires before an acknowledgement arrives, the sender assumes the acknowledgment

was lost, and sends another request for a control packet acknowledging the received data. The

only exception is in closing the connection. When closing, the source acknowledges context

termination, so that the receiver can be sure that the context is closed. If this last packet gets

corrupted or lost, the receiver will eventually timeout and close the connection.

This timeout method differs from the approach taken by TCP in that the XTP timer is only

needed when the sender is expecting a return control packet rather than implicitly with each data

packet. This significantly reduces the number of packet retransmissions when multiple data
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packetsareissued for each SREQ and the WTIMER times out due to a sudden increase in the

round trip latency time. Unlike TCP, where each data packet would be retransmitted after the

timeout, in XTP only a CNTL packet containing the SREQ would be sent. The corresponding

returned CNTL packet would indicate which data packets, if any, to re_mit. This is a

conservative procedure which forces a "synchronizing handshake" before retransmitting except

when retransmission is explic!fly indicated by the receiver.

The _ receiver only sends an acknowledgment When the sender requests one. Thus, a

range of data packets may be acknowledged by one CNTL packet. This reduces the overhead of

generating and receiving extraneous CNTL packets and the number of interrupts which must be

serviced per context.

Some transportprotocolsrequireelaboratepacket exchanges to establish,maintain and

terminatea connection.The i$0 TP4 protocol,forinstance,requiresthatsix logicalpacketsbe

exchanged fora singleexchange of data.t_The firstpairnegotiatesthe connectioncreation,the

Second pairsends thedatapacketand acknowledgesthe correctreceiptof data,and thelastpair

close the connection. This additional packet ping-ponging is undesirable in a real-time

environment.

Closing an XTP connection is coordinated using the three flags RCLOSE, WCLOSE and

END. These flags are listed in Table 3. The local host sets the RCLOSE or WCLOSE flags in an

out-going packet to inform the remote host that it has completed all reading or writing it intends

to perform on the shared connection. Note that in a full duplex connection between two nodes A

and 8 data would be transmitted in both directions (A.--)8 and B.->A). Using RCLOSE and

WCLOSE, each direction can be shut down independently. Suppose 8_A completes first. In the

last data packet from 8 to A the WCLOSE flag is set, indicating no more data will be sent from B

to A on the connection. A responds by acknowledging the received data and the WCLOSE request

g
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by setting RCLOSE in the subsequent CNTL packet. Meanwhile, data packets from A are still

being generated and transmitted to B on the same connection. Packets from B to A now have

WCLOSE set, and are only CNTL packets acknowledging data sent from A tO B. Packets sent

from A to B do not have WCLOSE set, but do have RCLOSE set. Finally, when A is preparing

its final data packet, it sets the WCLOSE_g_n the outgoing packet to inform 8 that A has also

completed writing, and is ready to close the A--,B transmission (RCLOSE is also set in this

packet). 8's acknowledging CNTL packet also contains both RCLOSE and WCLOSE.

The END flag is set in an outgoing packet to signal to the remote host that the local host

released or closed its end of the connectioial Thus, _ is set in the final packet transmitted, and

indicates that the context has been terminated -- i.e., that it is guaranteed that no further packets

can be exchanged. If, at any time, a packet is received with the END bit set, the context is

assumed closed at the remote end, and the local host releases the context. This means that the

receiver/sender will not generate further packets, unless errors occur requiring retransmission. In

the previous paragraph, B's last CNTL packet would have the END flag set.

w
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Parameter
T

SREQ

DREQ

END

RCLOSE

WCLOSE

EOM

BTAG

ETAG

Location

wailerflags
field (1 BIT)

trailer flags
field (1 BIT)

tra_r_v'
field (l BIT)

trailer flags
field (1 BIT)

traaer_gs
field (1 BIT)

wailerflags
fieta (1 Brr)

t_ader_Ss
field (1 BIT)

trailerflags
field (1 BIT)

Description

(Immediate Status Request)
Set by sender when requesting receiver's status.
Effect- Receiver immediately returns a CNTL packet containing
up-to-date error, rate and flow parameter values,

(Delayed Status Request)
Set by sender when requesting receiver's status.

Effect: Receiver delays returning CNTL packet until all
queued data has been delivered to receiving client.

(EndOfConnection)

Set in the last packet for each cocmection.
Effect: No more packets will be transmitted.

(Read Side Closed)
Set when closing connection.

Effect: Future incoming packets will be ignored, even if
some data has not beenacknowledged.

(Write Side Closed)
Indicates that all user data has been _itted.
Effect: New output commands are aborted but _smission of
unacknowledged data may occtg.

(End of Message)
Marks the end of the current message transmission.
Furore packets (except for retransmissions) will pertain to
the next message.
Effect: EOM indication passed to receiving client.

(Beginning Tagged Data)
Signifies presence of user-tagged data in
first 8 bytes of the information segment.
Effect: BTAG indication and associated data are passed to
receiving client.

(Ending Tagged Data)
Signifies presence of user-tagged data in
last 8 byte, of the information segment.
Effect: ETAG indication and associated data are passed to
receiving client.

TABLE 3. XTP Protocol Control Flags

Referring to Figure 3, Packet (A) requests context termination by setting the WCLOSE bit.

The destination notes that WCLOSE has been set, and acknowledges the context termination

request by setting RCLOSE in control packet (B). In the fial packet (C), the sender sets all three

flags (END, WCLOSE and RCLOSE) to terminate the connection.

The "close" protocol based on END, RCLOSE and WCLOSE can uniformly support the three

packet graceful termination of Figure 3, an abbreviated termination, transactions, and abort
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situations without modification.

The two-packet, transaction-like packet exchange sequences are referred to as fast

handshakes. For full duplex connections, these modes are less reliable than the three packet

connection and appear in Figure 4. The two packet fast close can be considered a transport level

datagram service or the basis for simple request/response operations.

READER

FIRST (A)

CONTROL (B)

RECEIVER DELIVERS DATA

CLOSE I2_rDICATION FOLLOWS DATA

Figure 4. Two Packet Transaction-Mode Handshake

In one fast close mode, the source informs the destination that a final close acknowledgment

packet will not be sent by setting both RCLOSE and WCLOSE in packet (A)'s trailer. The-

source also sets SREQ, as discussed previously, to request acknowledgement of the data it

transmitted. Since the source has set RCLOSE, the destination knows that the source will not

transmit a final acknowledgement after receiving control packet (B). The advantage of this mode

is that the destination doesn't have to wait to close the context after issuing the closing control

packet. Control packet (B) sets RCLOSE, WCLOSE and END.

In another fast close mode, the sender sets WCLOSE and SREQ in packet (A), and the

receiver returns with WCLOSE, RCLOSE, and END set in packet (B). The relationship between
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the XTP closing flags can be illustrated as shown in Figure 5. In Figure 5, six different paths for

closinga connection are depicted.
m

In the paths marked a) and b), the local host operation system or XTP client application has

requested a graceful close of the XTP connection. Path a) corresponds to the case where a

sending context has completed data transmission. In the first step, the host informs the XTP

subsystem that closing has been requested. As in Figures 3 and 4, the XTP subsystem responds

by setting the WCLOSE flag in the next outgoing packet. At this point, the sending context enters

the next step in closing. In this step, the local XTP subsystem waits for the remote system to

acknowledge all data and, specifically, to acknowledge the write close request (WCLOSE) with a

remote read close acknowledge (RCLOSE received). At this point, the WTIMER is started, as

shown in the picture by a loop back to the same state. If the acknowledgement occurs before

WTIMER expires, the connection can now be closed by sending the final sender.generated

CNTL packet of Figure 3. Otherwise, the WTIMR expires, a second WCLOSE request is sent,

and the WTIMER is restarted. Path b) is a symmetric case when the host at the reader requests a

gracefulclose.
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a)

b)

c)

d)

e)

0

Figure $. XTP Closing Connection Modes and the WCLOSE/RCLOSE/END Flags

In parts c) and d), the local XTP sub-systefii_ has detected a close request from the remote end

of the connection, and responds by closing the local end gracefully. As in the host initiated close

modes, the WTIMER is used to retransmit the close acknowledgement until a packet containing a
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set END bit is received. (Once again, the third and final packet in Figure 3.)

The three packet close can at any time be short-circuited by sending the END bit prematurely,

from either end of the connection. As shown in part e), this may have been initiated by an

"impatient" host. At the connection end receiving the END packet, closing is abruptly terminated

as in part f).

Note that when a data acknowledgment is requestedin _, as in _-_ FIRST packets of

Figures 3 and 4 (packet (A) in both figures), the acknowledgment is not necessarily provided

immediately. In the fast close cases, the receiver delays acknowledgment until all data received

prior to the SREQ have been processed. This includes the data contained in the packet with

SREQ.

XTP contains a second status request flag in the common header flags field which is called

DREQ. DREQ differs from SREQ in that SREQ requests a response immediately from the

receiver, and DREQ requests it after the currently queued data have been received at the receiver.

This is useful because the acknowledgement is delayed until the receiver has freed the buffer

space associated with the queued data and is capable of accepting more data from the sender.

Flow control blocking is minimized.

In closing, SREQ behaves like DREQ -- if this were not so, the protocol would behave as

follows in minimal packet exchange scenarios such as in Figure 3. Packet (A)'s SREQ could

generate CNTL packet 03) before the data from packet (A) had been delivered to the receiving

client. Thus, CNTL packet ('B) doesn't acknowledge the data sent in packet (A). At the sender.

the context could not be closed because the data was not acknowledged. After=the WTIMER

expires, a new packet would be generated at the sender, say packet (C') requesting the receiver

once again return its status. The final control packet, say (C"), would acknowledge that all data

had been successfully transferred. In this scenario, an extra packet, Packet (C') has been sent, and
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the WTIMER has been forced to expire at least once, both of which are unnecessary and

undesirable. Thus, in closing, SREQ responses are delayed until all data have been processed.

3. Error, Rate And Flow Control in XTP

XTP includes substantial error, rate and flow control mechanisms which all require feedback

from the remote XTP receiver process to the local XTP sender process. This feedback is

containedinsideCNTL packetsand guidesthe senderon what and when to transmit.In this

section,each of thesecontrolmechanisms isexplored.In particular,flow controlispresented

withinfluecontextof an example,depictedinFigure6. This figureillustratesa situationwhere

thesenderintendstotransmita totalof 27 packetscontaininguserdatatothedestination.At the

point in time depicted, the data in the first seven packets have been transmitted, has arrived

correctly at the destination's receiver, is queued for delivery to the destination host receiving

process, and has been accepted by the host m processing on these seven packets has thus been

completed. The receiver has detected a gap in the data stream occuring over the bytes in packets

I I through 14. A gap is detected when out of sequence data are received and accepted. The

missing data bytes may be lost or delayed. The XTP packet format has provisions for reporting

up to 16 separate gaps that an) outstanding within the data stream of any one context at a given

point in time.

w

Packets 8, 9 and 10 have been received by the destination, and queued for transfer to the host.

They currently occupy space in the XTP buffer for receiving packets from the network. Buffer

space is finite, and is partitioned among various contexts between the destination and other hosts

on the inter-network. The buffer space currently allocated for this context's receiver buffer at the

destination is large enough to hold 13 data packets. (Note: Buffer space is actually allocated as

a number of bytes 4, not packets, because the amount of data contained in each packet may

vary. The scenario presented here has been simplified.) Packets 8, 9 and 10, in addition to
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packets15,16,17and18arein thebuffer, leaving space for six more data packets.
g
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RECEIVED BY DESTINATION XTP
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Figure 6, XTP Flow Control and Selective Retransmission

NOTES:

CURRENT RECEIVER ALL(X:

VALUE IS SEQUENCE NUMBER

OF FIRST BY'rE IN PACKET 21

sm romw,,ZTING
UPDATED ALLOCATION

FROM RECEIVER

PACKET 20 CONTAINS SREQ

AND IS IN TRANSIT

PACKET 19 IS CURRENTLY

_O AT THE

DESTINATION

The four packets 11, 12, 13 and 14 were transmitted, but never arrived at the destination in an

acceptable form. Together, they represent a gap in the stream of data received from the network

for the context. These packets have been either discarded or delayed somewhere in the network.

:_if:_e receiving _process continues to accept packets beyond packet 20 before the gap is

filled, the receiver will not have enough buffer space for the gap when it arrives. The destination

XTP process must assume that the gap will eventually arrive, and therefore sets aside space for

the lost bytes from the allocation. Sineer.he XTP receiver process is required to deliver the data
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stream in the same byte ordering that the source process generated it, packets 15, 16, i7 and 18

must be held in the buffer until the preceding gap is filled. Thus, 11 data packets are currently in

the buffer space, or have space reserved. The remaining two packets of buffer space are currently

free.

3.1 Flow Control

When the buffer space is full, the receiver will discard any additional non-gap-filling data

packets, even if they are well formed "the receiver will not ovemm its buffer allocation for the

context. Unless the sender has detailed knowledge of the receiver's buffer space, and the

existence and extent of gaps in the received data, it may continue transmitting new data packets

that eventually get dropped by the receiver, needlessly overburdening the network.

Thus, a mechanism must exist for the receiving XTP process to inform the sending XTP

process about the current state of its receiving buffers. This information is included in control

packets sent from the receiver to the sender. Specifically, the receiver includes the parameters in

Table 4.

Parameter TTlm Locatlem Description

ALI.,(X_ 32 bit seque_ nurabe_r oomml segment

DSEQ c_mmon m_r

I + sequence numl_r of lut byte receiver will accept.

I + sequence number of lut byte _oeiver delivered to32 bit sequence number

32 bit sequence numberRSEQ ooatml segment I + sequmce number Of last bye receiver accepted.

ALLOC - DSEQ

RSEO-DSEO
Size _ receiver's dam buffer in/_ts.

Number of bytes received and waiting to be transferred to destination cli_t process.

w

TABLE 4, XTP Flow-Conu'ol Parameters

ALLOC constrains the sender from introducing more data than the receiver's buffers can

accept. The sender refrains from sending bytes with sequence number ALLOC or higher. Thus,

ALLOC is one greater than the highest byte sequence number that the receiver will accept. DSEQ

is the sequence number of the next byte to be delivered to the destination application process, or

client. Likewise, DSEQ can be thought of as one greater than the sequence number of the last
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byte delivered to the destination client. All bytes with sequence number less than DSEQ have

been successfully transferred to the destination client. DSEQ is always less than or equal to

ALLOC. Subtracting DSEQ from ALLOC (modulo 232) yields the buffer size allocated in bytes

to the context by the receiving XTP process. Note: A default value of ALLOC is used initially by

the sender until a value is received from the receiver.

The sender holds data that have been transmitted in a buffer until it knows the data have been

delivered to the destination client. As long as the data are buffered, they can be retransmitted if

necessary. When the sender notes that DSEQ has been extended, it frees the buffers associated

with me delivered data.

Note that DSEQ appears in the common trailer rather than in the control segment like

ALLOC and RSEQ. Refer to Figures 16 and 18 for an exact layout of both the control segment

and the common trailer includedin controlpackets.
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RSEQ is tl_ sequence number of the first byte not yet received contiguously from the

network. This can be the first byte in the first gap, or the first byte in the next data packet

expected. As with ALLOC and DSEQ, an alternative interpretation exists for RSEQ. All bytes

associated with sequence numbers less than RSEQ have been buffered by the receiving XTP

process at the destination, but may not have been delivered to the destination client process yet.

Thus, RSEQ is one greater than the largest consecutively received data byte sequence number.

The sequence numbers of all bytes associated with gaps lie between RSEQ and ALLOC. The

foLlowing relationship conceptually holds for DSEQ, RSEQ and ALLOC:

DSgOs RSEQ < ALLOC
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CoLlectively, these parameters provide the means for XTP to implement flow control whereby

the receiver can restrict the sender from sending excessive data prematurely. Note that all

sequence number parameters in XTP occupy 4 bytes -- SEQ, RSEQ, DSEQ, ALLOC and the
!
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sequencenumberpairscontainedin theSPANfieldof CNTL packets associated with gaps in the

received data stream.

v

The exception to the above inequality occurs when the number of bytes to transmit exceeds

232. In this case, insufficient bit patterns exist using 32 bit sequence numbers to uniquely identify

each byte to be transmitted. To arbitrarily bound the size of data transmissions to this or any other

number would be unacceptable. To allow unbounded-sized transmissions, sequence numbers

must be reusable. XTP, like other protocols, reuses sequence numbers when necessary using

modulo arithmetic -- byte 0 follows byte 232- I. Thus, in practice, ALLOC may wrap when

extended, and actually decrease in value, as depicted in Figure 7.

= .

l

I_=*O

r

232-1 o

ALLOC . EQ

Figure 7. Flow Window Ring Structure

It should be observed that each byte still in the bit pipe, i.e., each byte currendy in transit or

still subject to retransmission, must be uniquely identifiable, so that retransmission is possiblel In

TCP/IP sequence numbers are limited to 16 bit numbers with only 216 = 64K bytes possible in the

bit pipe at any given point in time. On the other hand, XTP's 232 bit patterns yield over 4 billion

unique sequence numbers. Thus, XTP is more naturally suited to networks With both high
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bandwidth and/or high end-to-end latency than TCF)/IP. s

Once the sender has been informed of the receiver's aLlocation limit via the ALLOC

parameter, it continues to transmit until the allocation has been reached, without the need for

individual acknowledgements of each packet transmitted. Thus, XTP more efficiendy utilizes the

higher reliability of modem networks, such as fiber optic LANs. Owe the allocation has been

reachedinthishypotheticalexample,theXTP senderprocesssetstheSREQ parameterinthelast

datapackettransmitted,and the receiverrespondsas earlierdescribedwith a controlpacketthat

acknowledges all data received, describes any gaps detected, and, if appropriate, advances the

allocation. 6
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For example, in Figure 6 the receiver is c_rrently receiving packet 19, and waiting to deliver

the packets 8, 9 and 10 to the destination cliem. Suppose that both tasks complete before packet

20, marked with an asterisk, arrives. The values of the parameters DESQ, RSEQ and ALLOC

will have changed as depicted in Table 5.

W

5, Van lacobsen has proposed extending the TCP protocol to. among other things, include 29 bit sequence numbers to

=

extend the size of the TCP flow control window. [_ ....

.

detem-,ined by the user applicati0n.



v

- 25 -

"Parameter
ALLOC

DSEQ

Before

(sequence number of first byte in packet 21) or
(l+sequence number of last byte in packet 20)

(sequence number of first byte in packet 8) or
(l+sequence number of last byte in packet 7)

Aner

(sequencenumberoffirstbyteinpacket24)or

(l+sequencenumberoflastbyteinpacket23)

(sequencenumberoffirstbyteinpacket1I)or

(l+sequencenumberoflastbyteinpacketI0)

RSEQ (sequence number of first byte in packet 11) or no change
(l+sequenee number of last byte in packet I0)

TABLE $. Change in Flow-Conla_l Parameter Values

=

w
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These changes reflect the freeing of buffer space associated with packets 8, 9 and I0 that

allows the allocation to be extended by three data packets. RSEQ has not advanced because the

sending XTP process is still unaware of the gap's existence and has not retransmitted the missing

packets contained in the gap. When packet 20 is decoded, the receiver sees that SREQ has been

set, and responds by sending back across the network a control packet with the new allocation

and a description of the gap. Until the control packet arrives at the sender XTP process, the

sender refrains from further data packet transmission. After decoding the control packet, the

sender notes the new, extended allocation, and transmission may resume. Packets 11, 12, 13, 14,

21, 22 and 23 could be sent.

An alternative allocation policy exists in XTP based on the size and availability of the

receiving client application's buffers_ _s-m_eis referred to as reservation mode. In reservation

mode, the transmission is determined by the size of the receiving user's buffers reserved

specifically for the context. In this mode, the sender must pause between message transmissions

(the end of a message is indicated when the EOM bit is set in an outgoing XTP packet) until the

receiving client has posted a new client buffer to receive the next message. This is necessary to

separate adjacent messages into different client buffers, since each message may not entirely fill

its buffer.
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The mode is invoked by the RES flag in the common header flags field. The 4 byte ALLOC

field is redefined in this mode to contain the size of the current receive buffer at the receiving

client when the RES flag is set. ALLOC is located in the common header. Note that the field

designated RESERVED in the XTP header (see Figure 16) has nothing to do with the reservation

mode described here. The RESERVED field is reserved for further extensions to XTP and is

undefined at present.
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In reservation mode, the reservation buffer size may differ greatly from the normal allocation

size, and may be greater. This mode is similar to the the allocation control mechanisms in the

VMTP fT] and NETBLT Is! protocols.

3.2 Rate Control

Unfortunately, flow control is not sufficient to ensure efficient, error-free transmission

between the sender and receiver, even on an exn'emely reliable network. Imagine a network

containing both hardware and software implementations of the XTP protocol. Since the VLSI

chip set will aLlow much of the protocol to be executed in parallel, a sending XTP process

implemented in hardware may overwhelm a receiving XTP process implemented in software if it

sends multiple, back-to-back packets.

One solution would be for the receiver to impose a one packet allocation scheme in which the

sender would block after each packet w i.e., stop-and.wait. Each data packet would contain a

SREQ, and each packet would be individually acknowledged by the receiver. In this scheme,

excessive numbers of control packets would be generated (one per data packet), and the transfer

of data would proceed slowly.

III

k

Even with all-hardware implementations, a router between two networks may be transferring

multiple data streams between two networks where each data stream is attempting to use the

maximum data flow rate possible. Although the hardware XTP receiver in the router may have no
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trouble processing and queueing a burst of incoming data packets as it arrives, the router's output

buffers may fill up due to the unpredictable backlog of packets queueing for output on the target

network. Consider, for example, a node on an F'DDI LAN connected to a node on an Ethernet

LAN through a router. Clearly, the router occasionally needs a mechanism for lowering the

packet arrival rate. The one packet allocation approach would be very inefficient, and all of the

extra control packets would slfll pass through the router, taxing its capabilities further. In short, a

better approach is needed.

The XTP solution uses rate control to restrict the size and time spacing of bursts of data from

the sender. Within any small time period, the number of bytes that the sender transmits must not

exceed the ability of the receiver (or intermediate touters) to decipher and queue the data

otherwise they will be overwhelmed and begin dropping packets, creating gaps in the received

dam stream. This problem is independent of the flow control/buffer size problem discussed

previously. The receiver may have adequate buffer space available, but back-to-back packets

may arrive faster than the XTP receiver process can analyze them. The XTP parameters used to

implement rate control are shown in Table 6. Together, the two rate control parameters allow the

receiver to rune the data transmission rate to an acceptable level.

= ,

Pau'sme_r l_atliom Descrlptlml

RATE cairn9 wlpDem M,t_dmmn number d bytes receiver wtU ,¢¢ept in e,ch one second time period.

BURST c_mtrol _elpmem Maximmm _be_r d bytes n_ceiver will accep_ per burst o( packets. The

trmsn,nitler may not transmit more than BbI_,ST bytes between RTLMER timeouu.

RATE/BURST

BLrRST/RA'rE

Maximum number of p_,cket bun-. pc1' Second.

Seconds per Pack_ Burn. The rile tLm_ (RTLMER) is set to this value.

RATE = -I R,st,. conu'd i.s disabled -- i.e.. se_der transmissions ate unccmstrlined.

TABLE 6. XTP Rate-Control Parameters

In the first situation described, where a XTP receiver implemented in software is Listening to

a hardware-implemented sender, packet bursts must be time spaced to guarantee that the slow

receiver has sufficient time between back-to-back packet bursts to complete protocol processing
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before the arrival of the next burst. With the above parameters, inter-packet spacing can be

achieved as follows. Set the BURST parameter equal to the MTU (maximum transmissionunit)

of the underlying network. Thus, each packet "burst" may not contain more than one packet's

worth of data. If the receiver can handle N packets per second, set RATE equal to MTU * N. In

this manner, the sender is constrained to spacing back-to-back packets accordingly. See Figure 8

which plots bytes transmitted versus time during a one second time period for a hypothetical X'TP

transmitter.

The RATE and BURST parameters are adjustable, and for each implementation of XTP,

appropriate values could be determined experimentally. Their values would then be included in

all out-going control packets from the receiver. Note that in this example, RATE > > BURST.

In Figure 8, the BURST and RATE parameters have been adjusted such that an inter-burst

separation occurs. Each burst of data is depicted by a ramped triangle. The separations between

adjacent bursts are shown by horizontal dotted line segments in which no progress is made

towards the top of the graph. During each pause in the transmitter, the slower receiver is allowed

to catch up.
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.... Figure 8, Rate Control of a Hypothetical XTP Transmitter
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Unfortunately, the sender process does not know the appropriate RATE and BURST values to

use with a particular receiver until the first burst of data has been completed; the proper value for

ALLOC is also unknown initially. The appropriate values only become known when the first

controlpacketarrivesatthe sender.Beforethiscontrolpacketisreturned,the sendermust use

defaultvaluesforthevariousflowand ratecontrolparameters.These valuesmay be differentfor

outgoing data than for incoming data; for instance,on a network with one hardware

implementatlonand 5 slowersoftwareXTP implementations,incoming packetstothehardware

XTP receivercan be handledwithno spacingbetween packets,butoutgoingpacketsneed tobe

spaced by thesame node.Thus, differentflow and ratecontrolparametersmay be used by the

senderprocess.

Ifprotocolprocessingspeedsvarywidelyon a network,the defaultvaluesforALLOC and

ratecontrolparametersaffectthe number of dropped packetsduringthe initialdataburst.A

conservativeapproach would be forthesenderto setthedefaultALLOC to a smallnumber of

N
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bytes (say one average-sized data packet as defined by the maximum transmission unit) and tO use

the aforementioned approach to setting the default rate parameters such that packet spacing is

sufficient for the slowest receiver on the network. After the initial burst, which also establishes

the context connection; the sender would block, waiting for the returned control packet generated

by the SREQ in the last data packet of the burst. This control packet would contain the more

accurate flow and rate control parameters specifically applicable to the receiver. In this case, few

packets would be lost at the cost of moderately more overhead in the initial burst.

m
w

In the router example discussed above, back-tO-back packet delay is not needed, but limiting

the number of bytes arriving in a given ame period is; thus setting RATE > > BURST (=MTU)

is not adequate for controlling flow rate. The router, implementing the XTP protocol in

hardware, can absorb back-to-back packets as fast as they arrive, but must avoid exhausting the

buffers between the two networks. To implement this, BURST could be set equal to RATE, and

RATE would be set to the rate at which the router could relay frames for the context in terms of

bytes per second. In this scenario, the RTIMER's interrupt rate would be once per second, and the

number of bytes per second allowed would equal RATE. As more inter-network contexts become

established, the router may need to restrict the burst rate for existing contexts with the RATE

(=BURST) parameters. Later, as contexts become inactive or removed from the inter-network,

theroutermay chose toincma_ theflowroteoftheremainingcontexts.RATE (=BURST) would

be increasedin outgoing controlpacketsin thiscase.RATE and BURST allow the routerto

dynamicallycontroltheflowintotherouterso astoavoidoverwhelming itwithrequests.

XTP's ratecontrolfeaturemay be disabledby settingRATE equal to -I inoutgoingCNTL

packets.
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3.3 Error Control

When errors do occur in transmission, XTP, like TCP and TP4, must detect the errors and

initiate retransmission of the erroneous data. XTP uses two checksums over the XTP packet

contents to verify the integrity of the data received through the network. These two checksums

appear in Table 7. The XTP checksum algorithms were chosen for speed and VLSI compatibility;

details of their operation are found in Appendix A of the XTP Protocol Definition version 3.4. [tl

w

_rame_4r _flm D_Eriptioe

DCRECK Value tra_r (4 bytes) 4 byte ch_um over dauLfields.

Includes the c_muel sesmem in control packeu;

the informatioe segmem in infommtioe Imckets.

HTCHECK VLlue trtiler (4 by_) 4 byte ¢h_ over header and utile,.

NOI)CHECK Flq u_ilcr.g_#s F18S u_.d' to signify that DCHECK r..l_u_lm is not

field (I BIT) pt_rtt in almmt p_eL

NOCHECK Flag he,aderflals F18$ used to signify that _.iuum e,.alaflatian is

field (1 BIT) disabled in current [me,ket.

XOR Caladamd mi_ exdmive-OR ot_rations ordy. Representsthe verdcad parity d dam byte_.

RXOR Eac.h in,-nnedi_Le result _ left ro_te,d before exdusive-ORi_ in the next weed.

x'rP'i c.hec.kmm function is formed using left rmmioe and exclusive-OR operations over the 16-bit words oovet_d.

The 4 byte checksumis the cancateruuiond two 2-bym checksumsXOR and RXOR. (XOR I RXOR).

w

TABLE 7. XTP Checksum Parameters

It is preferable to place the Checksums in the last few bytes of the XTP frame so that the

checksum calculation can be concurrent with packet transmission or reception. If the checksums

were placed in the front of the packet, the entire packet would have to be accessed to compute the

checksum before packet transmission begins. Thus, two sweeps over the data would be necessary

one for the checksum, and one for copying the bytes to the network. This inefficient approach

is inherent to TC'P and TP4, whose checksums occur before the information segment, and

avoided in XTP where the checksums follow the rest of the packet and are found in the common

trailer.

The checksum DCHECK is optional in that it can be activated or deactivated by setting the

NODCHECK flag in the XTP common trailer's flag field. When NODCHECK is set, no

DCHECK is calculated by the sender XTP process, and the DCHECK field is undefined.
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Checksum calculation is also not performed when the NOCHECK bit is set in the header flags

field.

m
U

When either checksum indicates that the packet received contains erroneous information, the

receiver assumes the packet is garbled and discards it. If the source were known, the receiver

could immediately inform the source XTP sender process that the packet was garbled in transit

allowing the source to begin retransmission. Normally, this information is available by

referencing the packer's KEY field, located in the common header, that uniquely identifies the

origina_g cli-entprocess _) the nodeth_ tra_mitted the packet. But, the receiver cannot assume

that the KEY field is correct, since the error could conceivably have occurred anywhere within

the packet including the KEY field itself (if the HTCHECK checksum is invalid). Thus, the

receiver always discards packets received with errors.

is

m
m
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At the sender, transmission continues as if no error had occurred. The next packet is placed

onto the network. If this new packet arrives correctly, the receiver examines the starting

sequence number for the packet. Like the context identifier KEY, the starting sequence number is

contained in the packer's header (in the SEQ field). The receiver expects the SEQ value of the

incoming packet to equal the current RSEQ value for the context. Since a packet was dropped,

the incoming SEQ is larger than RSEQ by the size of the dropped packet. The receiver accepts

the data packet, noting _ it arrived out of sequence, and that a gap exists in the data stream.

Now the receiver can utilize the KEY information of the current packet to send back a CNTL

packet to announce the gap. Having the receiver indicate when a gap has been detected is

optional in XTP; if the receiver fails to send the CNTL packet, the sender will eventually include

a SREQ and block, or timeout.
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3.4 Gaps And Selective Retransmission

A receiver could describe a gap using a pair of sequence numbers that bound the gap. Instead,

XTP describes the groups of bytes (called spans) which were received. This process is known as

selective acknowledgement. Thus, in XTP, the location of gaps is inferred to be between the

spanning byte groups selectively acknowledged. Each byte group is described with two sequence

numbers that bound the bytes received. Associated with each byte group is a gap immediately

preceding it in the ordered data stream. The first sequence number in the pair marks the byte

where the group started (i.e., the first byte in the group). The second sequence number is one

greater than the last byte in the group (i.e., the first byte not contained in the group.) Between

each pair of received byte groups is a gap, or hole, in the received byte stream encompassing one

or more bytes, as illustratedin Figure 9. : : •

GAP
1

"IIIII'"

RSEQ

GAP GAP

2 3

I i I I I I I" "'I I I I I 17 .................."• • • • o......,,...,.....:

I I

Figure 9. Gaps and Spanning Byte Groups
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As mentionedearlier,XTP allowsareceivertotrackand notify up to16 separategaps forany

givencontext.This capabilityisnot required,however- receiversmay chose toignoreallout-

of-sequence data. In this case the receiver would never allow gaps to be created, and would force

the sender to retransmit both lost data and correctly received out-of-sequence data. This latter

method is referred to as go-back-n retransmission.

Since up to 16 byte groups may be described in any CNTL packet, the SPAN field must be

variable in length. It is located in the control segment, and contains descriptors for the gaps.
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Each byte group descriptor takes 8 bytes and contains the two 4 byte sequence numbers that

bound the group, Preceding the sequence number pairs is NSPAN, occupying 4 bytes so that the

following SPAN sequence number pairs are aligned onto 8 byte boundaries: NSPAN contains the

number of byte groups described with the SPAN field. In Figure 9, NSPAN would equal 3.

Each gap spans a portion of the data su-eam. For 16 individual gaps to accumulate would

presumably be a rare occurrence, and only possible when iarge volumes of data are transmitted

with few SREQs. Consider a massive file transfer between mainframes with considerable buffer

space, The entire file could be transferred with a single SREQ in the final data packet. Any lost

data could be determined and C6_unicated to the sender in a minimum number of CNTL

packets (one) in most cases. This process, in _,l'uch only the lost data are rctransmi_d, is known

as selective retransmission. The XTP selective retransmission parameters are summarized in

Table 8.

_I
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SPAN

Spana/ag Group

Gap

Location

contTol

segment

Description

Number of spanning byte groups described in the SPAN field.

Legal values range from 0 to 16.

control Variable length field con_mixtg paa's of sequence numbers.

segment Each sequence number pair describes a spanning byte group.
The first sequence number in each pair is associated with the

starting byte of the group. The second sequence number is

one _ than the sequence number of the last byte in the group.

A'con_lp_ous group of byes received out of sequence. To theteh of

each .¢p_m/a I iI_UP is • ho/c or gap.

The saKBl_W.e manbets of allbyes in all spanning groups are

between RSEQ and ALI.£_.

Portion of the data sa'eam Currently in transmission which has been

lost or delayed. The receiver detects a gap when a packet arrives

whose staring sequence number (SEQ) > RSEQ.

TABLE 8. XTP Select/ve Remmsmission Parameters

I
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4. XTP Timing Considerations

In certain pathological cases, theXTP connection may be severed without one or both ends

realizing what has occurred. Typically, connectwn timers are used to detect the possibility that

such an event has occurred. In XTP, the CTIMER is used to monitor for such events. CTIMER

expires when the connection has been inactive for 60 seconds. By the time a break is suspected, a

number of attempts may have been made to prompt the other "end" to re-synchronize the

protocol. In XTP, these prompts are in the form of _ packets (called ._,nc packets). If, after a

number of attempts have been made, the situation has not improved, the XTP process will inform

its cliem application process of the situation, and if so directed, close the connection. Each _nc

packet is issued when a timer expires.

In other simatior_, communication may have been tempora.vily suspended or interrupted, and

connection closure is not required. In these cases, XTP attempts to re-synchronize the sender with

the receiver. Re-synchronization is attempted when the sender has issued a SREQ to the receiver

and the WTIMER times out before the receiver's _ packet has been received by the sender,

as earlier described. The XTP sender process will assume that the packet containing the SREQ

was dropped, and transmits another packet containing an SREQ to the receiver -- a _ac packet.

IftheoriginalSREQ containingdatapacketisstillon thenetwork,two SREQs couldarriveatthe

receiver,both requestingpositiveacknowledgement of datareceived,and an updated ALLOC
i,

value from the receiver. The receiver complies by ourpuuing two CNTL packets back to the

sender. Note that at the receiver, the values for ALLOC, RSEQ and DSEQ may have changed

between the arrival of the two status requests. Thus the _ packets may contain different

._ _ : ___7- ..... :_= _...... ! __ ,

information -- one outdated and misleading, the other one current, so the sender must be able to

distinguish the most current CNTL packet from old ones.

E XTP associates each receiver-generated CNTL packet with the SREQ that requested it. When
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thesenderissuesa syncpacket,itincrementsa countervalue(theSYNC counterforthecontext),

and includes this value in the SY'NC field of the outgoing sync packet. The SYNC field is located

in thecontrolsegment,and occupies4 bytes.When the receiverreceivessync packetsfrom the

sender,itcopiesthe SYNC value from the incoming CNTL packetintothe ECHO fieldof the

outgoing C'NTL (called an echo packet). The sender differentiates between old echo packets and

the cu.n_nt one by comparing the ECHO value against the current SYNC counter contents. Like

SY'NC, the ECHO field is 4 bytes in length and located in the control segment.

Note that an ECHO/SY'N'C match does not guarantee that the echo packet is the most current

echo packet, but from the sender's point of view, this is the best assumption. Consider the

undesirablecasewhere a sender'ssecond syncpacketamvesat the'receiverbeforethefirstsync

packet, by taking a different route on the inter-network. The receiver will issue two echo packets,

but in the wrong order. In the first echo packet, ECHO is set to 2, while in the second, more

current echo packet, ECHO is set to 1. When the first echo packet arrives at the sender, SYNC

equals ECHO, and the packet is accepted. Although this scenario is possible, it is improbable.

When an incoming ECHO matches the context's SYNC counter value, the sender examines

the receiver's current status data. If no retransmissions arc needed, and ALLOC has been

extended, the sender resumes with data transmission. If the receiver has not extended ALLOC,

but there are gaps to retransmit, the sender begins retransmitting the lost data. Otherwise, the

sendermust waitforthereceivertoextendtheALLOC valuebeforeproceeding,and must block.

Each time thesenderoutputsa new sync packet,itresetsWTI.MER, and blocks.Ifthesender

L_

failsto synchronize,or failsto receivean updatedand extended_LOC in a reasonableamount

of time, the XTP sender notifies the sending client process, and may terminate the connection. If

the sender and receiver reestablish synchronization, the sender quits outputting sync packets, and

resumes data transmissions.
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l _y n_/ec _ packets are also used to update the current round trip time (RTT) estimate. The

sender sets tho TIME field in the sync packet to the current time at the sender. When the receiver

prepares the corresponding echo packet, it also copies the TIME field of the sync packet into the

TIME field of the echo packet. When the sender receives the echo packet, it estimates the current

round trip time by subtracting the echoed TIME value from the current time. This R'['r estimate

is used by the sender in setting the duration of the WTIMER. WTIMER is set to twice the R'Vr.

Since XTP acknowledgements are generated at the sender's request (using SREQ), the RT'r

estimate more acctu_tely reflects the average round trip time than schemes relying on timeout-

generated acknowledgments.

XTP bounds the time each packet is allowed to "live" in the network using the time-to-live

(I"TL) field in the common trailer. The time value is expressed in 10 millisecond "ticks". In

outgoing packets, this field is initialized by the user to a given number of ticks (in TCP time-to-

live is based on the cur_nt R1_r estimate). At each hop, the TTL value for the packet is

decremented n when the value becomes zero or negative, the packet has exceeded its time to

live and is discarded. Note that bounding the time the packet can exist on the inter-network aids

in removing packets which can not he delivered due to pathological situations such as host or

router crashes.

Since the TTL field occupies 2 bytes, 64K different values are expressible in the field yielding

a range in values from zero seconds to 655.36 seconds in 10 millisecond steps. For networks with

greater propagation time than 655 seconds, (e.g., a very wide area network) the TTL mechanism

must be disabled. XTP allows the TTL mechanism to be disabled by setting the initial TTL value

to zero. If a packet arrives with a TTL value of zero, it is assumed that the policy is to bypass the

TTL decrement-and-discard step, and the packet is relayed onto the next network with the TTL

value still equal to zero.
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When transmitting, the sender may use a timer to comply with the receiver's rate control

requirements for bytes/second ('RATE) and bytes/burst (BURST). This timer (RTIMER) must be

accurate enough to support the rate control timing requirements for the given implementation.

The duration of the RTIMER is set to BURST/RATE seconds. Each RTIMER timeout

reestablishes the limit on the maximum number of bytes which can be output on the context

during the next RTIMER time period.

m

J

i

XTP requires only one timer at the XTP receiver process, and it is only needed during

connection dosing as shown eartier in Figure 5. This timer (aLso caUed the _) is set

whenever the receiver process issues a CNTL packet with the RCLOSE request set. The timer

estimates the round trip time, and if necessary, generates a new RCLOSE request upon expiring.

Each multi-context route requires a special timer c_ed a Path timer (FrlMER). In touters,

the F17MER duration may extend for days to _ow datagram-type service over stable,

infrequently used routes. In each end-node, the PTIMER duration is substantially slaorter, and

may be measured in minutes or hours.

The timing parameters discussed in this sectien are listed in Table 9.
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TIMEi[

CTI341m

RTLMER

PTIMER

P'rIMER

Partmeca"

RTT

YI'L

SYNC

ECHO

TDAE

Durttlea

2*R'l'r

60 second,

implementazi_

dependent
(BURS'ratATL_
minute, of
tens of minutes

hourll or

day.

smd_r's
coGtr.xt

seilm_

_Lml

segment

D.,XT_Uo.

Used by umder whim m._/nammizin| with receiver. A new ry_ packet is
mmtmined when _ expi_s. WTIMER i, mnarted every time • SREQ is

issued, md durra8 dosinl.
Usedby m_eiver dtmnlt dolin|.

Usedby im_sdertodejectdeadc,_rmec'U_lS.

Used by sender to perform rate controL

Path ttmer (one per mete tn each node). Used by holt hamanaging routes.
routemay _ muJUpie¢ontextl.

Path timer (one per mete in each router). Used by rotae¢ to detect dead rotaes.
Each route may _ multipte c_mtexts.

1)es:HplJoa

Round Tnp Tune cremateforc_ttexLEsumatebatedm timeelapsedbetwe_

transmissionofumder aym packet and reeelmcm of usocia_d _ko
ca_rLpacket.

(Time-to-llve).
Used m detect and discard packeu which stay ott the network too lOnl_
The umder _ Y]-L to a number ¢ff 10 m_ dckJ whm the packet
ismmsmiued. Intermediatermae_ decrementand monitorthevalue.

Coemer value used by sender to individually mark .Wn_Imckeu.
The t_fiver oo94es the SYNC value into the ECHO field when mqxmdinl

to •ryRc packet. Allows sender to differ,ntiate betwee_ CNTL packets.

Fieldthatreceiver e._t_iesreceived SSt_;Cintowbe_ feslxmdinltto .ryncp_etJ.

Echoed back by receiver from sender's a3_tc packet. Used to

estimate cummt round trip time. What the sender receives •T]2dE
echo, it subtracu the echoed TIME from the current TIME to estimate

the cummt roend trip delay (RVI3.

TABLE 9. XTP "I'tmm and T'tminl Parameters

5. Addressing Mechanisms In XTP

The aforementioned KEY field is but one of the parameters XTP uses to perform addressing.

Addressing occurs on a number of levels. First, consider XTP as a client process to an tmdeflying

datalink layer as depicted in Figure I. At this level, the datalink layer needs a unique service

access point (SAP) for XTP to separate incoming XTP packets from non-XTP packets. The XTP

packet, or frame would be encapsulated inside a datalink layer's protocol data unit (PDU). As the

datalink layer process decodes the PDU, it determines the destination to be the XTP server
:

process.

XTP was designed to interface with a variety of datalink layers. In each case, XTP packets

must be encapsulated within the PDUs of the underlying datalink layer. This encapsulation must
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conform to the requirements of the various datalink layer protocols. For those protocols capable

of multiplexing their services among multiple transport layers (say XTP and TCP

simultaneously), the datalink layer uses a unique, standardized identifier to distinguish between

TCP and XTP packets.In 1990,XTP isexpectedtobe operationalon Ethemet, IEEE 802.5,and
Z7

FDDI; XTP isalreadyoperationalon topoftheUser Datagram Protocol(UDP).

J
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m

m

Within the XTP layer,each end of a XTP connectionmust be ableto uniquelyidentifyits

peer.To complicatematters,XTP's inter-networkand multicastcapabilitiesimpose additional

addressingrequirements.

One solutionwould be toincludeallrelevantaddressingdataexplicitlyineach packet.With

largeintemetaddresses,thisapproach would cause substantialper-packetoverhead. The XTP

approach cachestheaddressingdatacontainedinthefirstpacketatboththe senderand receiver,

and usestheKEY as a lookup index intothecache toaccesstheactualaddressesas needed.As

describedearlier,thisinitialpacketisa specialinformationpacketoftypeFIRST. The following

packetscontainonlytheKEY, resultinginsmallerpacketsbecausetheKEY isencoded infewer

bytes.

In TCP/IP, 14 bytesareused foraddressinginformationin every packet-- IP requiresan

IDENTIFICATION fieldof length2 bytesthatisused,likeXTP's KEY field,to identifythe

connectionuniquely,4 bytesforthe IP sourceaddress,4 bytesforthe IP destinationaddressin

theIP encapsulation,and 2 byteseach forthe sourceand destinationportsin theTCP segment.
= _ . .

In XTP, 4 bytesarc used to spec{fythe contexthumor, Thus, _ encodes the addressing

informationwithlessoverheadperpacket.

Medium Access Control addresses (MAC values) uniquely identify nodes on the same local

area network. Note that within each _ process, however, a MAC value may not be unique

if multiple _ c_-en_--_'e Connecied :i0 the Sanae remote host, _e MAC address for each
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L

connection's context record will be the same. The concatenation [MAC,KEY] of the remote

host's medium access control address and any given context identifier uniquely determines the

connection.

W

r_
h

When LANs are interconnected, packets must travel through routers or gateways and

[MAC,KEY] may no longer be unique. As with the KEY, XTP associates an identifier with each

route inside a router (the ROUTE value). ROUTE values are included in each packet, and the

triple <MAC,KEY,ROUTE> does uniquely identify each context. Inter-network muting and the

ROUTE field are further discussed in section 5.1.

The KEY is generated by the node initiating the connection, and included in the FIRST

packet transmitted to the receiver. Also included in this FIRST packet are addressing data used

to identify the intended receiver. These addresses are contained in a list for comparison with the

receiver's address filter. In multicast mode, more than one receiver is targeted for each packet.

The appropriate receivers note the arrival of the FIRST packet, and save the context identifier

(KEY), the source of the datalink frame containing the packet (MAC address) and the route

identifier (ROUTE) in a database associated with the context record. Subsequent packets need

not contain the destination network address since the triple <MAC,KEY,ROUTE> can be used to

lookup the context.

As described in Table 10, the KEY field of the XTP packet common header is 32 bits in

length, but the context identifier KEY's value is restricted to a value expressible in 31 bits. The

extra bit is located in the most significant bit position, and reserved for determining the direction

of the packet -- i.e., which end of the connection generated the packet. Packets sent from the

node which generated the KEY value have the bit set to zero; packets received at the node

generating the KEY value have the bit set to one. When the high bit is set, the KEY is referred to

as a return key. If the KEY in an incoming packet's header is a return key, the receiver can use

m
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the key as a lookup to determine the context for an incoming packet since the receiver generated

the original key.

In order to make context lookup faster, the receiver must be able to substitute a value of its

own choosing for the newly forming context's KEY. But the new KEY will only be useful if the

peer uses it when _itnng packets on this context. The substitute KEY is transmitted back to

the context initiator in the XKEY field of the next CNTL packet. The receiving XTP context

continues to ou@ut CNTL packets containing the original KEY (with the high bit set), whereas

the sendingx'rP contextwilladopt the receiver'srequestedKEY (alsowith the high bitset)

when transmittingpackets.Note thatinthiscase,once KEYs have been exchanged,allpackets

willbe usingreturnkeysa withthehighbitset.See Figure10.Key exchanging isonlypossible

when there is a unique receiver (i.e., keys may not he exchanged in multicast mode).
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TYPE:

KEY:

Packet(AI) ,

FIRST

KEY DESIRED BY (A) High Bit=0
ROUTE: ZERO

SEQ #: ZERO

ISTHAY ISYAY ETHAY AT&DAY
DATA: ISTHAY ISYAY ETHAY AT&DAY

ISTHAY [SYAY ETHAY AT&DAY

SREQ: ONE
t

P_;ket (I31)
TYPE: CN'IZ

KEY: RETURN KEY (A) High Bit=l
ROUTE: ZERO

SEQ #: ZERO

ALLOt:Buffer Size RATE=xxx
CNTL: RSEQ:Received BURST=yyy

(eu:.)
I

XKEY: KEY DESIRED BY (B) High Bit=0

TYPE:

KEY:

ROUTE:

Following Packets_'om(A) ,

DATA

RETURN KEY (B) High Bit=l
i ZERO

SEQ #: Sl, $2, $3, etc.

DATA: -

|

,

ISTHAY ISYAY ETHAY AT&DAY
ISTHAY ISYAY ETHAY ATADAY
ISTHAY ISYAY ETHAY AT&DAY

TYPE:

KEY:

ROUTE:

Following Packets from (B)
CNTL

RETURN KEY (A) High Bit=l
ZERO

SEQ #: ZERO

CNTL:
ALLOC:Buffer Size RATE=xxx
RSEQ:Received BURST=yyy

(etc.)

Figure 10. XTP Key Exchanging

In Figure 10, the sending context at node (A) issues a FIRST packet to set up a connection.

This packet is labeled Packet (A1), and contains the KEY value that context (A) prefers be used
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in returnedpackets.The XTP receiverassociatesthisKEY (sayKa) with the contextrecordat

node (A) correspondingtotheconnection.
l

When the packet arrives at (B), the XTP receiver at (B) creates a new cOntext, and saves A's

desired KEY value (K,,) in the context record at (13) associated with the connection. All packets

returned to (A) on the connection will use the return form of (Ka), denoted by (K',,). (13) decides it

would be advantagious to exchange KEYs. Packet (A1) contains a SREQ, so (13) responds with

Packet (131). Note the KEY field value (K_,), and the XKEY field value (Kb).

When Packet (B1) arrives at node (A), the KEY value (K_) it is used to locate the context

record for the connection. (A) saves the requested exchange KEY in the context record for out-

going packets on the context.

Any additional packets sent in either direction contain the appropriate return KEY value for

the packet's destination. That is, in the A--)B direction packets carry (K_,) and in the B--)A

direction they carry (K_,) respectively in their KEY field.
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Parameter

MAC

KEY Field

XKEY Field

ROUI_ Field

XROUtE Field

MULTInag

Location

External
toXTP

XTP header

XIP

control

segment

X IPheader

.......XTP
control

segment

XiP header

/lagsfield

Description .....

Mediwn Access Control layer address.

The physical addxess of the network interface for the given host.

Uniquely identifies the XFP context at the sender.

31 bit number generated by sender occupies 4 bytes or 32 bits.
The highest bit reserved for determining direction of packet.

ExchangeKEY returned fromdestination

for sender to use in subsequent packets.
Uniquely identifies the x'rP context at the destination.

Used by sender when forwarding through touters.
Similar to KEY field.

ExchangeROUTE value mmm_ from router
for senderto usein subsequentpackets.
Conu_nsmuter-generated numberusedto assistrouter in
determiningorigin anddestinationof inmr-networkedpacket.

Indicates that XTF muhicasting addressing is being used.
In this mode multiple receiverssimultaneously listen to the

same sender. More efficient than setting up individual contexts
for each receiver and then duplicating outgoing packets.

Contained in the FIRST packet only. Thisfield is variable
in length since multiple addresses may be specified.
It is further sub-divided into the following fields:

ADDRESS Segment

DADDR Flag

XTP
information

segment

XTP header

flags field

TABU

I.'_NGTH number of bytes in address field

FORMAT network addresssyntax1

null

ID

Actualaddresses

to 8-byte-align address dam
undefined in XTP version 3.4

depends on FORMAT

Indicates that direct addressing mode is used.
In this mode the KEY field is interpreted as a short address.

10. XI'P Addressing Parameters

The address segment included in the FIRST packet contains two main fields m a fixed length

descriptorfieldindicatingtheadd_ssing formatused,and a variablelengthfieldcontainingthe
i

actual list of addresses. The address descriptor field is 16 bytes long, and contains four sub

fields _ LENGTH (2 bytes). FORMAT (2 bytes), NULL(2 bytes) and ID (8 bytes). The

LENGTH field is the number of bytes in the variable length address segment, including the 2

bytes in the LENGTH field itself. The FORMAT field specifies the address formatting scheme

used in the list of addresses. At present, compatible formats are supDoned for both Darpa Interact

and ISO formats. [9] Formats for accommodating Xerox XNS [1°1 style addresses, U.S. Air Force

Modular Simulator project (MODSIM) addresses and Source Route addresses are under study
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and should be available in future versions of the XTP prot_!.

Included in the Intemet compatible format are IP source and destination host addresses (4

bytes each), and source and destination ports or socket numbers (2 bytes each). For 8 byte

alignment purposes, the IP address format also contains 4 null bytes.

The ISO address is formed by concatenating the appropriate network layer service access

point (NSAP) with the transport layer service access point (TSAP) yielding two 24 byte addresses

for a total of 48 bytes -- one address for the destination (DSAP), one for the source ($SAP). For

each address, the NSAP is positioned in the first 20 bytes. The TSAP occupies the remaining 4

bytes. Since _I_0 address length is divisible by 8, no additional null bytes are needed with this

formatting scheme. [91The address descriptor ID field is currently not defined in the XTP protocol

definition revision 3,4.

Addressffftergng occurs at the receiver when determining whether to establish the connection

requested by the sender of a FIRST packet. Beforehand, the receiving cLient describes to the XTP

receiver process the set of network addresses to which it will connect. When a FIRST packet

arrives, the receiver compares its address segment contents against the receiving client's address

filter to determine whether to accept the packet or not.

In the event that the network topology is known, and network addresses do not require more

than 4 bytes, XTP can use a direct addressing mode. In this mode, the KEY field contains the

actual destinadon address rather than an index used to look up the Context This direct addressing

mode is invoked by setting the DADDR flag in each packet. The DADDR flag is located in the

common header.
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When connec_g to a process on a remote network, a connection must be established through
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one or more reuters until the destination network is reached, and finally to the remote host on

which the receiver client resides. Packets hop from one network to the next through touters. The

router receives the packet on the first network, makes a routing decision, and outputs the packet

onto the second network. The router must be capable of determining the appropriate node on the

new network to which the packet should be transferred, based on the destination addressing

information contained in the packet. As in the single network case, this addressing information

can be cached. Figure I I illustrates the address management occurring when a connection is

established on first an adjacent network requiring a single hop (through router R), and second on

a remote network requiring two hops (through routers R and H).

The ROUTE field serves a similar purpose to the KEY field. Refer to Table 10. It is located in

the XTP common header and is utilized by the muter to locate the proper addressing data in its

cached address translation map. As with the KEY, ROUTE values can be exchanged between

adjacent routers and/or the endpoint nodes. Like the XKEY field, the XROUTE field is located in

the control segment of CNTL packets.

When a FIRST packet arrives at the router, the router saves the incoming ROUTE value in

the data structure associated with the route upon which the packet is travelling. Packets generated

at the router to be returned to the context initiator will use the return form of this ROUTE value.

The Router has the option of generating its own ROUTE values for the next host or router in

sequence to use on the given route. When relaying the FIRST packet towards the destination, the

router merely substitutes its preferred ROUTE value in the header, overwriting the original

ROUTE value chosen by the context initiator.

m

w

Packets arriving at the muter from the destination-end of the connection will contain the

return form of the router's desired ROUTE value. The destination-end of the connection may

choose to exchange ROUTE values with the muter. If so, it will set the XROUTE field to its
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chosenROUTE value when transmitting its first CNTL packet. The router will note the

XROUTE value, and use its return form in future packets to the destination-end.

The router relays the CNTL packet towards the sender-end of the connection. In this CNTL

packet, the original KEY value and ROUTE value received from the sender-end in the FIRST

packet are substituted into the CNTL packet header, both in return form. [f the router choses to

exchange ROUTE values with the sender-end, it creates a second ROUTE number, associated

with the address of the destination, and includes this ROUTE value in the XROUTE field of the

CNTL packet sent back to the sender node on the first network.

Once the CNTL packet arrives at the sender node, the sender adopts the router's XROUTE

value, and includes the return form of it in subsequem packet transmissions for the given

connection, in the ROUTE field. Thus, the router may use different RO_ values for packets

traveling in different directions. This is illustrated in Figure I I. In the top diagram, node (A) is

the sender, node (B) is the receiver, and node (11) is the router connecting the two networks LAN

I and LAN 2.
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SOURCE AND DESTINATION NETWORKS SEPARATED BY ONE ROUTER

A R B
[IR,IA,K,A] [2B,2R,K,RB] I

[IA,IR,K',A']
[XROUTE=RA]

[1R,1A,K,RA']

L1 ""

[2R,2B,K',RB']
q

[XROUTE=B]

!2B,2R,K,B']

L2

MAC Addresses: Original
Destination Source

Key & Roum Fields

\\//
[ IR,IA,K,A ]

[ IA, IR,K',A' ]

Roumr Retttrned
Key & Route Fields

A

SOURCE AND DESTINATION NETWORKS SEPARATED BY TWO ROLrrERS

R
[IR,IA,K,A]

[IA,IR.K',A']
[XROUVv.,=RA]

[IR,1A,K,RA']

L1

H B

[2H,2R,K,RH'] _-- [3B,3H,Kj-I:B] Noms:

Key or Roum Returned
equals original valueplus231

[2R,2.H,K',RH'] [3H,3B,K',HB']
[XROUrI'F.,=HR] ' - [XROUTE=B] [XROUTE,=xxx] signifies that

ROUTE value exchange is
request¢d.

[2H,2R,K,I-IR'] [3B,3H,K,B'] Subsequent packets to requester
_ =- Containreturnedform of

requested exchange ROUTE value.

.° •

'" L2 " L3

Figure 11. Address Substitution Mechanism in Routers

The bracketed notation [1R, IA,K,A] [_OU'IT_.=xxx] describes the Values of address

parameters associated with a packet transmitted _t-ween adjacent hosts_ _=Xs described in Figure

11, the first value (1R) is the.MAC address of the destination node, the second value (IA) is the

MAC address of the sender node, the third value (K) is the value of the KEY field contained in

the XTP packet, and the last value (A) is the ROUTE value contained in the given packet. When
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the XROI.,rI'E is nc- List_xt, the field is disabled and set to zero. The XI_,OUTE designator appears

below the arrow DOin-dng from the packet's sender to the packet's destination.

ill

In the first packet, transmitted from source (A) to the muter (R), the route field is set to A.

This is a FIRST packet, and thus contains an address segment inside its information segment.

The muter examines the address, and determines that the packet needs to hop from LAN 1 to

LAN 2, and that the destination is at node (B) on LAN 2. When the router outputs the FIRST

packet onto LAN 2, the KEY field is unchanged, but the router has modified the ROUTE field by

setting it to (RB), which is associated with the MAC address of (A). When (B) receives the

modified FIRST packet,itacceptstheconnectionrequest.The returnCNTL packethas thehigh

bitsetinboththeKEY field(K')and ROUTE field(RB') indicatingreturnforms forthevalues.

A/so, the XROUTE fieldhas been set to B, signifyingthat(B) wishes to exchange ROUTE

values with the router.

When the L-2q'IT,packetarrivesattherouteron LAN 2,theROUTE valueisusedto retrieve

theaddressingdatafornode (A).Since thisisthe firsttransmissionfrom (B) to (A),router(R)

generatesa new ROUTE valuetoexchange with(A).This ROUTE value (RA) isstoredinthe

XROUTE fieldof the CNTL packetreturningto (A).ItwiLlbe used at the muter to associate

incoming packetsfrom (A) with theMAC addressof node (B) on LAN 2. Node (A) notesthe

XROUTE fieldvalue,and includes(RA') as theROUTE valueinallsubsequentpacketsoutput

forthecontext.

Also depicted in l_gure 11 is a scenario with three networks and two touters, (R) and (H). In

this situation, packets must make two hops. Note that the routers overwrite the ROUTE field

values incoming from packets generated by the other router. New ROUTE field values are

generated at each hop.
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Figure 12 demonstrates KEY and ROUTE exchanging between two nodes (A) and (B)

separated by a common muter (R) using the simple packet diagrams of Figure I I. Note that once

all exchanges have completed, all KEY and ROUTE values used are in return format.
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(_ . Packet (AI_ First Packet from (R) to (B)

_TYPE: . _sr " TYPE: . Fmsr

KEY: KL=YDESCP.E_Se (A)rr_#,Stt-o KEY: i KEYDESmS)sY (A) _ B_,-0

Rotrr_: Ro_ DeSn_ sY_^_aB.o _-F6-'-trr_:__ "_

ISTHAY ISYAY ETHAY ATADAY _ T

DATA: [STRAY ISYAY ETIIAY ATADAY DATA: " [STHAY [$YAY ETHAY ATADAY

• ISTFL4.Y ISYAY El'HAY ATADAY i ISTHAY ISYAY ETIIAY ATADAY

SREQ: o_ SREQ: i o_

6

First Packet from (R) to (A) Packet _B1)

KEY: _Zrb'L'__'Y (A)Rip sit-t _ KEY: [ _rtaIN_ry CA)_ m_-I

i ROUTE: ' _ Rotrm (A)rr_nS_..,, ROUTE: _ _ Roum a_)r_ m,-tSEQ #: zl_o I SEQ #: i z_o

AL,LOC'JBuff,_ SLm RAI"E_xx ! ALIXX_ _uffw S/m RA_u

. RSEQ_mv_ (etc.) B_I_'T-y,rS C'NTL: i IISF_._/vM (we.) .BUII_

X_OUTE: _our_ vesture sY _) rm.o XP.OU'_::: Rounzz_.sm_ nY0B)zm.o
XKI_Y: , KIZYo_m_ sY :B)rr_ silo XKEY: ! KEYD_SmEV'SYfB)rr_ sit.o

F.oliQwin_ Packets from (A) Following Packets from (R) to (B)

TYPE: , DATA TYPE: i DATA

KEY: . _-Y ¢s) rr_ n_.x KEY: ! _K_-Y fS) m_ S_.I
ROUTE: RETURNaob'rE0_._)_ B_,,z ROUTE: i IL_'I-GRNROL_'E(_)_ Bi_.t

t

SEQ#: sLszs_,_. SEQ#'-"-_ _ sL szs_,__

_s-n_Y_S_AY_,_Y ATXDAY _ T---DATA: IS_Y ISYAY El'HAY ATADAY
DATA: : ISTH.AY ISYAY ETHAY ATADAY

, IS_Y ISYAY ETRAY ATADAY ; [STHAY ISYAY ET[4AY ATADAY

SREQ: o_ SREQ: _ oNI_

Li

TY_."

KEY:

ROUTE:

SEQ #:

CNTL:

Followm$ Packetsfrom(R)to(A)

2_110

AIJ.,OC ".B_ Si_ RATE-us

RSEQ'.R,w_.vM (_.) BURST-yyy
( I

TYPE:

KEY:

ROUTE:

SEQ #:

CNTL:

Following Packets from (B)

C.XtTL

R_'rCRN KEY (A) _ Bix,,l

RETL'RN ROL'I'E CR.8)I-IishBiu.l

ZERO

ALLOC :Buffm"Size RAI'_..x u

RSEQ:R_av_I (etc.) BL'RST-yyy

Figure 12. XTP Key andRoute Exchanging
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As discussed earlier, each individual route can exist for an extended period of time, (i.e.,
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perhaps even for days inside routers.) By allowing more than one context to share a route, the

cost of initializing and maintaining the route can be shared among contexts. Additionally, the rate

control for the shared route can also be shared. Sharing routes allows the routers to combine

redundant table entries in internal routing tables and minimize their space requirements. XTP

supports route sharing, and inheritance between contexts.

In XTP, an existing route can be utilized by a newly-forming context by setting the ROUTE

value in the header of the FIRST packet t0 :theROUTE num_r associaL_d _"_ the particular

route. This number is available in the context record of any active context currently using the

route.

One complication of route sharing is that the router can not detect when the route is no longer

being used without being explicitly requested to release the route. In XTP, the special

information packet type ROUTE is used by touters and nodes to tear down routes. When a node

knows that it is finished using a given route_ it issues a ROUTE packet to the router, which

contains a RELEASE request embodied in the information segment. The router responds by

issuing its own ROUTE packet acknowledging the request and releasing the route.

W

6. XTP Fragmentation Issues

XTP also supports fragmentation of data packets when necessary. The need arises when two

connected networks have different maximum transmission unit sizes, as mentioned earlier. In this

case, the touters perform the fragmentation transparently. The resulting set of smaller packets are

referred to as fragments, although they are legitimate XTP frames themselves. Each fragment

contains its own header, a portion of the original packet's data segment and its own trailer.

=XTP CNTL packe_are sufficiently small that they do noi require fragmentation. The largest

CNTL packet contains a 24 byte header, 16 byte trailer, 40 byte constant subset of the control
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segment and 16 SPAN groups containing 8 bytes each, also located in the control segment. The

maximum number of bytes in a CNTL packet is thus 208 bytes plus the media framing.

During fragmentation, the router must refrain from exactly duplicating the original data

packet;s header and' trailer into the smaller fragments because certain option flags are non-

replicatable. For example, the SREQ bit in the common wailer must not be replicated w if it

were, each fragment would solicit its own CNTL pacltet status response from the receiver, when

only one was desired. Partial exceptions are the first fragment's header and the last fragment's

trailer. The first fragment's header is an exact duplicate of the original paeket's header. All other

fragments contain different SEQ numbers, and perhaps other differences from the original header.

The last fragment's trailer would be an exact duplicate of the original trailer except that the

HTCHECK header-trailer checksum is calculated over a different header from the original

packet's HTCHECK. _

Refer to Table 1I for a list of therepiicatable and non-replic_ie hags and option bits in the

XTP header and trailer.
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Replkatal_

AU HeadezO_an

Finis/zc#pcBTAG

Explanaflom

Ths_ flilS tomato infonm,ticm which is unchanged during
fralmema/_e, such as _ • dima-addressedpriory
mull/cast mmsm/ssice d underway. They must be copied into
all fra_nanu creamd. The repUcatable header q_ons flass
am:

LFFFLE, NOCHECIC DADDR, NOERR, MULTI, RES, SORT and DEADLINE.

Non.re#katab_ Ezplanatioe

8TAG "'

ALlTrailer Rals

This flq indicates that bcsinnin ! taued da_ is

[ocaue.din the first 8 bytes of the original data packex.
Since the gaU_ data is positioe_d al the sum of

data being fragmented, it is c_ied into the the fun

8 bytes of the tim packet fmlpmem. The f_ow/nl frqments

can not contain _fL,_ taUed data. Thus, the oriilmal
psckm's BTAG flail is ca_ed into the f_ pscket fragment
only. The BTAG field fo_ addi,_onal D_k_ frqmems is set to
F_rO.

T_ trailer flap are ,dso nou-replicatable for vsuious reasaes.
They are all capied into the trsiler flals fl_ld of the la_ piudu_
fraIFnem only. The u-siler flap field in theotherpacketfmlmmu
(i.e., the tim and inm_nedime psckeu f_u) m

_ byseu_ themaUu_zemes.

Each SR_-Q_¢ DREQ ime_tes a CNTL packet from the n_eiv,_. If
they were copied into each packet fraimem, the receiver w_mid
ieneram mo_ CNTL pecke_ than necessary.

RCLOSFJWCLOSE and END are used in ¢losin$ _ o_ex_. R_iv_ I any
them l_mammiy woa/d ¢_mfuse the receive, md vio_ the c.lo_h_

m_of__

ETAG, likeBTAG indicatesthepresenceoftal#_ddata,inthiscase

inthelast8 byes oftheoriginalpocket's data segmentThisdata

mustamve inorder,andthusmustappearinthelastpacketfragment

EOM indicates that tim data in the original packet com#eted a message

trmsfer. I/this bit were cc_iai into mot_ than one packet fmgmem.

d_ receiverwouldassumema_ thanoeemessagehad arrivederroneously.
The EOM Ral must _ besetuntil the last pecka fragmeat _o_taining

a poflk_ M d_ meuap.

NO_ _ that the pack_ dora not contain, c_ecknun over the
Mom_ _ If in _ fralmenta_ion this checksum is no_
n_dculau_ for each packet fmlFnem, the NODCHECK flag is not
n_plicau_d.

TABLE It. XTP Flag 1L-'#icafion During Fralme_,.,[on

A method is under development for combining packers at a router wl_¢h have identical

ROUTE fields. The combined packet is referred to as a SUPER packet, and contains a special

experimental header referred to as a SUPER header. The individual XTP packets can be

recovered if the SUPER packet must be fragmented. _
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7. XTP Multicast Mode

XTP defines a multicast mode of operation where one sender can broadcast the same data

stream or datagram sequence to multiple receivers simultaneously (one-t0-many). Figure 13

depicts such a case where the sender and all receivers are located on a token ring. The multicast

sender is located at node (A), with multicast receivers at nodes (B), (D) and (E). To activate this

mode, the MULTI flag in the common header is set, indicating a multicast transmission is in

progress.

XTP's multicast mode is similar in operation to the single receiver mode in many respects.

The transmitter issues a FIRST packet, and subsequent DATA packets. SREQ is used to solicit

CNTL packets. Error control is supported using the go-back-n retransmission scheme; selective

retransmission is not supported. Note that in multicast connections the allocated buffer space in

each receiver may vary in size. Essentially, data transmission proceeds at the pace of the slowest

receiver.
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Figure 13. Multicast Transmission on a Token Ring
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When a multicast receiver detects out-of-sequence data, it muhicasts the CNTL packet, called

a reject packet, so that all other receivers on the connection realize that an error has occurred.

If the multicast involves a large number of receivers, the sender will be inundated with reject

packets as alI receivers clammor to announce the error. To dampen this effect, XTP requires

receivers to refrain from sending the multicast reject packet when aware that the sender has been

properly nodfied. The receivers monitor the network for other reject packets during the time the

packetisbeing preparedand waitingfor_inissi0n. ifanotherrejectpacketarrives,destined

forthe senderon the same multicastcontext,thereceivercompaces itsown RSEQ valuetothe

one contained in the newly arrived packeL RSEQ is significant beeau_ this ist/_ next byte the

multicast receivers will accept _ remember, no gaps are allowed in multicast mode. If the

receiver's own RSEQ number is greater than or equal to the packet's RSEQ number, the receiver

refrains from sending its own reject packet. In this case, the rollback requested in the existing

reject packet covers the request at the current receiver also. If, on the other hand, the receiver's

own RSEQ value issmallerthan _ p_acket's,tl_ receiveroutputsitsown rejectpacket.The

basic idea is to guarantee reliablereceptionat all receiversof the data stream,without

complicatingthesender'stask.

XTP alsoallowsthemulticastmode tooperateina lessreliable"no error"mode indicatedby

setting the NOERR bit flag in the common header. In-this mode, receivers discard garbled

packets, and inform their host of the occurrance, but no reject packet or retransmission scheme is

used. This technique is appropriate' for, say, broadcasting sensor data in a control system _ the

data are generated continuously, and a particular lost value is quickly replaced with a more

current reading.

: j
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8. Prioritization Issues In XTP

XTP suppoas prioritization of packet processing at both the sender and receiver using

preemptive priority scheduling As packets arrive for processing, they queue for service when the

server is currently unavailable. A preemptive scheduler determines the priority level of the

arriving packet, and places it at the end of the appropriate queue, _e Figure i4. In this scheme,

each queue is associated with a specific priority level, and the server prefers to service packets

from the highest priority queue whenever possible. Thus, if the server is currently processing a

low priority packet as a higher priority packet arrives for service, the server is preempted from

processing the lower priority packet and begins processing the higher priority packer.. Only after

all higher priority packetshave been completed or blocked will the server return to the low -

priority packet. The granularity of pre-emption (i.e., whether on a byte, frame, or message basis)

is currently under study.
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PRIORITY RANKING:
(A)> (B)> (C)> (D)

Figure 14. PreemptivePrioritySchedulingAmong 4 Queues

InFigure14,packetsWiththe highestpriorityareplacedin queue (A),packetswiththenext

to highest priority are plaid _ queue (B), and so on. If queue (A) is non-empty, the server will

choose its next packet to process from queue (A), regardless of how long other packets have been

waiting. Thus, the multiple queues essentially re-sort the arriving packets.
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In XTP, two preemptive-schedulers exist -- one for incoming packets, and one for outgoing

packets. For both the reader and sender prioritization schemes, XTP suppom 232 different

priorities, or 232 different queues. (This wiU most likely be implemented by using position in a

single queue.) Each context is associated with a particular priority level. Multiple contexts can be

at the same priority level simultaneously.

r=_=w

===

m

For Outgoing packets, the packet Waits for access to the transmitter in the appropriate output

queue. The priority level is encoded into a 4 byte integer and placed into the SORT field before

transmission. The SORT flag in the common header is set to one to indicate that the packet

con_ a SORT value. When the packet arrives at the remote receiver, the SORT field is

examined, and the packet is placed in the input queue corresponding to the packer's priority.

In XTP, the priority level is inversely proportional to the value of the integer encoding _ i.e.,

- iarger SORT field values have lowerpriority. This scheme is static, in that the priority level

remains constant as the packet travels=through _ the network. XTP aLso supports a dynamic

preemptive scheduling scheme based on deadline times and synchronized system clocks with i00

microsecond resolution. In this mode, tim original SORT field value represents a furore clock

time (the deadline) whose priority is proportional to the immediacy of the deadline. As the

system clock time advances rewards the deadline, the packer's priority level increases. As with

the static SORT mode, lower $ORTvaiues also-correspond to higher priority levels, and are used

to determine the queue into which the packet should be placed.

The two scheduling schemes just described are not allowed to co-exist on any given XTP

network. Each network may utilize one or the other, but aot both simultaneously. Alternatively,

priority operation may be disabled altogether.

Table 12 further describes the three parameters which control priority scheduling in XTP

packets.
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Parameter

SORT

DEADLINE

SORT

Location
header

option
flags

header

option

flags

Description

Flag used to indicate preemptive priority scheduling is active.
When SORT is set to one, the SORT field value (see below) is

interpreted as a priority level. The type of scheduling is

determined by the value of the DEADLINE flag.

Flag used to indicate w'hich type of preemptive priority scheduling
is currently being used on the XTP network. Possible types are

dynamic deadline scheduling, and, static scheduling.

When DEADLINE is set to off, the SORT field is interpreted as a

static priority. The packet's priority remains at the same priority
level until it arrives at its destination. Lower SORT field

values correspond to higher priority levels.

When DEADLINE is set to on, the SORT field value is interpreted as a

future clock time at which the packet's dead/ine will occur. The
clock's resolution is I00 microseconds. At each hop, the SORT field value

is compared to the synchronized clock time to determine the packer's
current priority. If the deadline passes and the packet is undelivered,
the packet's priority drops to zero.

header This field contains the packet's priority level in both the SORT and

(4 bytes) DEADLINE prioridzation methods. With 32 bits, the field provides over

4 billion distinct priority levels. With DEADLINE scheduling, the
maximum time-until-deadline expressible is approximately 12 hours.

SORT and DEADLINE scheduling are mutually incompatible, and therefore can not

be used on the same XTP network simultaneously.

TABLE 12. XTP Prioritization Control Parameters

To enable deadline priority, both the DEADLINE flag and the SORT flag must be set to on.

The SORT flag enables processing of the SORT field, while the DEADLINE flag determines the

scheduling discipline used. In deadline scheduling, it is possibl e for the deadline to arrive before

the packet has reached its destination. This would be detected if the SORT field became older

than the current time. In this case, the packet is not discarded but instead becomes low priority.

XTP will attempt to deliver packets with expired deadlines only after all other packets have been

processed.
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9. Detailed Format Descriptions for XTP Packets
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Refer to Figures15 and 16 fordetailson the layoutof the XTP packet.In Figure15,the

format of control packets is shown, including the header, control and tra_ler segments. In Figure

16, the format of information packets is depicted. In Figure 17, the command word field in the

common header is illustrated to show the bit location of each of the header's option flags.

Likewise, Figure 18 details the bit locations of each flaginthe common trailer!sflags field. Note

that the trailer's flags field and align field together occupy 2 bytes. Theflags field contains 10 bit

flags. The remaining 6 bits are the align field.

The information segment may include address descriptors, addresses, beginning tagged data,

ordinaryuserdataand endingtaggeddata.Inthej_ags fieldarefound additionaloptionflagsfor

theXTP protocol

As seen inFigures15 and 16,the fieldsgroup togethernaturallyinto8 byteblocksforboth

XTP packettypes.InXTP, allpacketsaremultiplesof8 bytes,and thetrailermust be alignedon

an 8 byteboundary. Thus, Some variablelengthfieldsoccasionallyhave nullbytesappended on

totheend ofthefieldtoenforcethe8bytealignmentpolicy.

An interestingfeatureof the XTP packetformat concerns the order in which bytes are

arrangedin a word forvariouscomputers.Thisorderingaffectsthesequence inwhich thebytes

areplacedontothe network. Bytes withina word can eitherbe arrangedfrom highesttolowest

address,or from lowestto highestaddress.Differentequipment manufacturerssupportdifferent

byteorderings.Sinceno standardexists,XTP provideda namrai way to supportbothorderings

transparently.

These two orderingsatereferredto asbig-endian,and litde-endian.In big-endian,themost

significantbyte istransmittedfirst.In li#le-endianthe leastsignificantbyte istransmittedfirst.

Thus big-endiantransmitsfrom most sigmficantbyteto leastsignificantbyte,and li#le-endian
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transmits vice versa. J

The problem is m encode in each packet an indication of which byte ordering was used by the

sender to prepare the packet, and in such a way that a receiver adhering to either byte ordering

scheme can determine the correct order of the bytes. This was solved in XTP using two bit flags.

The position of the two flags were chosen so that they map into each other even if the byte

ordering is guessed incorrectly. The two flags are both set to the same value by the sender. These

flags are called the L_E bits, and are found in the _ghest and lowest byte of the common

header command word (refer to Figure 17). When the LITTLE bits are set to one, the sender

issued the packet using little-end_ byte ordering. If the LITTLE bits equal zero, the packet is in

big-endian format. If necessary, the XTP receiver process remaps each sequence of 4 bytes into

the ordering preferred by its host.
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XTP CONTROL PACKET FORMAT

Byte

....o.....r.....i......r....._.....I......3.....).....:;.....r....._......r.....6....._......7.....,
COMMAND WORD KEY FIELD

SORT RESERVED

SEQUENCE NUMBER

RATE (Bytes per Second)
I II

RSEQ (Consecutively Received)

ECHO (Where Syn¢ Field Echoed)

TIME (Echoed to determine n delay)

XROUTE (Exhange Route) NSPAN (Number of Byte Span Groups)

Low Seq Number for Byte Group 1

0 tO 16 Span Groups allowed

Low Seq Number for By_ Group j

XTP /I Dcheck (OverDataSegment)

COMMON _k_'

I 24 Bytes(Conshnt)

BURST (Bytes per Burst)
I II

ALLOC03o Not Exceed Seq Nero)

SYNC COsed to invalidate old CNTRLs)

XKEY (Exchange Key)

High Seq Number for Byte Group 1

Each pair marks endp0ints of a
Span of bytes received

High Seq Number for Byte Group j

DSEQ (Delivered to De.stHos0

HEADER

CONTROL
SEGMENT

HTcheck (Over Header and Trailer)

Figure 15. XTP Control PacketFormat

32 + n*8 Byt_

(Variable)

_16 Bytes

w



-64-

w

XTP INFORMATION PACKET FORMAT

I .......................................... ..............................................
_,,t._

0 [ 1 [ 2 ] 3 4 [ 5 ['6 7
Jl

///1 COMMAND WORD KEY FIELD

COMMON_ ( [ SORT RESERVED

HEADER \ t

_[ SEQUENCE N-U'M_ER ROUTE

h

w

2-_Bytes w
(Consiant)

/ .

DESCRIPTOR

ADDR FORMAT ] NULL

ID FIELD (Used by Destination in Context Lookup: [I'D, Key])

[_16 Bytes

nstant)

w

l ADDRESS List (Supports both DARPA IP and ISO NSAP/TSAP Formats) _ __

ADDRESSES All Addresses in List must have o° ISO NSAP/TSAP Address Formed by n*8 Bytes t--
same Address Format Concatenating NSAP & TSAP Values (Variable)

q

The L_ng%hof Each Address in _e List is a Multiple of 8 Bytes __

DATA l
DATA FIELD (May Contain Beginning or Ending Tagged Dam)

Data Field Length Arbitrary o
Header/Trailer Hags indicateTagged Data o

DATA HF_.LD (End)/

u

0

Null Field Expands Shon Packets to n*8 Bytes
Minimum Packet Length of the Network (Vanabte)

E

w

NULL (Variable Length, Used to Align Trailer)

XT_ _l Dch_k <Over D_ Sediment, ] DSEQ _l_liver_d _ _t H_0 _....... Bytes -- •

Figure 16. XTP Information Packet Format

W

III

J
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OPTIONS

I ...."->.....f....."6.....I......_'""1......;).....1......3.....[.....2.....r......;...........o"....Bit [

OFFSET (number of padding bytes before data in Information Segment)

XTP Version PACKET TYPE
t.n-tta I ! I I t com.)

PACKET TYPE (Data, Cntl, First, Path, Diag, Mainu Mgmt, Super, Route, RcntI)

Figure 17, The Command Word -- The First Four Bytes of an XTP Packet

Byte 3

Bym2

Bytel

I Byte0

DETAILS OF THE FLAGS AND ALIGN FIELDS IN THE XTP TRAILER

Bit

....._.....r.....; .....r.....; ....1...._......r......;.....f....._....._.......;....1....o......
I

I

...... ALIGN (6 bits)
I I I I

Figure 18. XTP Trailer Flag Field and Align Field Format

Byte I
i

Byte 0

_. _

-_.=
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